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The problem of an unsteady axisymmetric expansion of a monatomic gas into a 
vacuum is considered in the limit of small source Knudsen number. It is shown 
that a solution of the Boltzmann equation for Maxwell molecules valid for large 
time can be constructed, which matches with the known equilibrium solution for 
an inviscid expansion of a fixed mass of gas into a vacuum provided that the 
region near the zero density front is excluded. This solution is formally the same 
as that obtained for the similar problem of steady spherical expansion into a 
vacuum-the variations along each particle path of the unsteady flow being the 
same as that in the steady flow. 

Near the front, the expansion procedure breaks down and the equations re- 
quire a different sealing. A modified form of the Boltzmann equation is obtained 
which leads to a corresponding set of moment equations. Unfortunately, the set 
of moment equations is no longer closed and no essential simplification has been 
made. 

1. Introduction 
Recent solutions of the Boltzmann equation for steady spherical expansion into 

a vacuum have shown that, by means of a suitable scaling, a closed set of mo- 
ment equations can be derived for Maxwell molecules in the limit of large colli- 
sion cross-section (Freeman 1967). This has enabled distributions of temperature 
to be obtained (Edwards & Cheng 1966; Hamel & Willis 1966) and, in principle, 
higher order moments of the distribution function to be calculated (Freeman 
& Thomas 1967). A similar set of moment equations can be computed for the 
unsteady, axisymmetric expansion into a vacuum and the two-dimensional 
steady expansion into a vacuum (Grundy 1967). It can be shown that these equa- 
tions are again derivable by a suitable scaling of the Boltzmann equation in the 
case of Maxwell molecules. 

In this paper, the flow of an unsteady, axisymmetric monatomic gas into a 
vacuum will be considered. It will be shown that, away from the vacuum-gas 
boundary (see figure l), the equations of motion may be formally reduced to 
those for the steady spherical expansion into a vacuum along each particle path. 
This enables the complete solution for the spherical expansion to be used to con- 
struct this ‘core’ flow. Thus not only the temperature distribution but also 

46-2 



7 24 N .  G .  Freeman and R. E. Grundy 

higher order moments of the distribution function may be computed. Near the 
leading edge of the disturbance, however, the scaling breaks down and the solu- 
tions are not uniformly valid. A further scaling in this region shows that a closed 
set of moment equations cannot be obtained without some furt,her simplifying 
assumptions. 

Equilibrium 

FIGURE 1. Development of the flow in the (r, t)-plane. 

Mathematically, the procedure adopted in solving the problem is to consider 
a perturbation solution of the problem based on the already known equilibrium 
(i.e. inviscid) solution due to Sedov, Keller and Thornhill (see Mirels & Mullen 
1963). Such a solution will break down for large times in the core region and a 
uniformly valid expansion must be sought. This leads to the formal identification 
of the behaviour along particle paths as being the same as that of a spherical 
steady problem-a result which had already been conjectured by Hamel & 
Willis (1966). The solution so obtained can then be matched with the equili- 
brium solution. In  principle, further terms of this asymptotic expansion and the 
corresponding matching could be obtained, but this will not be attempted 
here. 

The breakdown of the core solution as the front is approached is more complex, 
but a suitable scaling can be introduced and a further asymptotic expansion pro- 
cedure evolved together with the appropriate matching scheme. The set ofequa- 
tions obtained for the second-order moments now contains third-order moments 
and the set of moment equations is no longer closed. Subsequent moments of the 
equation indicate that higher order moments than the one being sought will 
always intrude and consequently no essential simplification of the Boltzmann 
equation has been made. No further progress can be made in this region without 
some further assumption such as the adoption of a truncation procedure similar 
to that of Grad (1949). 

2. Solution of the Boltzmann equation 
The Boltzmann equation for unsteady, cylindrically symmetric flow is 

where polar co-ordinates r ,  6 and z are chosen with molecular velocities (&q, 6). 
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The right-hand side expresses the change in f due to collisions. This may be writ- 
ten (Chapman & Cowliiig 1960) 

( 2 . 2 )  

where fl = f(&, yl, El,) and f' = f (F ,  r', c) with ' denoting the velocities after 
collision, A = (~,,/2rn)B for a force law P = /c12/r5 between molecules of mass m. 
The molecules are thus assumed to be Maxwellian which obey the force law given 
above. For such molecules, the quantity uo is related to the velocities before and 
after collision by the collision mechanics (Chapman &, Cowling 1960), but the 
integration over vo and c is independent of that over the velocity field. 

The equation may be re-written in a more convenient form if new variables 
p2 = t2 + v2 and a! = ry are introduced whence 

;+(P+ a2 " f  7&= (g) 
C O l l  

(2.3) 

The macroscopic quantities number density and temperature may then be 
written as 

and 

The equilibrium flow associated with this equation is obtained by putting 
(af/at),,ll = 0, or, formally, as the limit A+m. The solution is the Maxwell 
distribution function 

where N ,  T and are the local number density, temperature and gas speed re- 
spectively. In terms of the moment equations, this is the inviscid flow and the 
corresponding axisymmetric equations are well known. For the case of a fixed 
mass of gas expanding into avacuum, a solution of these equations has been given 
by Sedov, Keller and Thornhill (see Mirels & Mullen 1963). The solution may be 
written in the form - 

N = ( 1  -h:)%/R', 6 = dR/dt, ("7) 

where 

and A, = r /R .  

The number density is zero on the front r = R or A, = 1. It will be observed that 
the variables introduced here are non-dimensional and have been scaled in terms 
of source conditions. To obtain the dimensional form of these variables, they 
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must be multiplied by the appropriate dimensional source variable, Thus, if 
[ ] denotes the dimensional variable we have 

(2.9) I [PI = PPO, [PI = PPO, [UI = U(POlPO)+, 
[ r ]  = r L  and [ t ]  = tL / (po/po)* ,  

where L = (5M/27rp0) andPo, po  and M are the source pressure, density and mass 
respectively. Henceforth, the equations will be described solely in terms of these 
non-dimensional variables. 

For large r and t ,  but such that r/t remains finite, the solution becomes 

(2 .10)  

and R = l i t ,  where h' = 3/ J2  and A, = r/Kt. 
If this behaviour is used as a first approximation for large A and an asyrnp- 

totic expansion sought in inverse powers of A, as t -+ 00 subsequent terms break 
down like t/A, r / A  as in the case of the spherical steady expansion. This non- 
uniformity thus causes us to seek a uniformly valid expansion for A and t large. 

We now write the Boltzmann equation in the form 

(2.11) 

where A is the non-dimensional form of A and (af/at),,ll = A N I .  
The quantity N I  denotes the collision integral and is, in general, a function of 

p ,  a, 6, r and t. Again, this equation is written in non-dimensional form and hence 
the quantity A is non-dimensional. It may be regarded as an inverse source 
Knudsen number. For molecules distributed according to the Maxwell distribu- 
tion, we may write A = (2/477)(L/Z) where Z is the molecular mean free path. 
The limiting process of interest here is the limit A -+ 00. In  order that r / A ,  t / A  
remain of order unity in the limit we must introduce new variables 

s = r / A  and t, = t / A .  (2 .12)  

A corresponding scaling in the other variables can easily be obtained as 

n = NA2,  

r = TA+, 
Q = (p-E) A%. 

$ = czA-4, 

x = <A%, (2 .13)  

Introducing these into (2 .11 ) )  we obtain 

= n(I($,  $, x, s, tl) +A-*I,) + O W * ) ,  (2 .14)  

where I ,  denotes the first term in the expansion of I .  It is not necessary at this 
stage to give all the detail of equation (2 .14)  but this will be found necessary later 
63). 
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Multiplication of (2.14) by g5 and integration over the velocity space gives the 
momentum equation in the r-direction as 

(2.15) 

The order of the error here should be noted. It is smaller than might be expected, 
since all the order one terms in (2.14) vanish when this moment is taken. This 
equation shows that g is given by the hypersonic approximation. 

Inserting this back in (2.14) then reduces the equation to 

(2.16) 

to first order. The terms neglected are of order A-8. The number density and 
temperature become 

(2.17) 

(2.18) 

and 

Comparison of the solution of (2.15) with the equilibrium solution shows that 

Equation (2.16) then becomes 

- 
[ = s/t,. 

(2.19) 

It is now more-convenient to work in variables 

@ = $t,, Y = $./A, h = s/t, and t ,  itself. (2.20) 

The equation~(2.19) reduces to 

and 

(2.21) 

The derivative is taken at  constant Q, Y!, x and A. It should be noted that 

Y? = $/A = A-*$ = Tt ,  A$, (2.22) 

and hence 7 and p - E are now scaled in exactly the same way. This result could 
have been obtained by choosiiig Y' as a variable initially. It would, however, have 
complicated the initial development of the equations. 

The similarity of the above set of equations to the spherically symmetric 
equations of steady flow into a vacuum (Freeman 1967) should be noted. If the 
time t ,  is replaced by r/E and a suitable cyclic permutation of the velocity co- 
ordinates introduced, then these equations are identical with the equations for 
spherically symmetric flow. Several important conclusions may be drawn from 
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this similarity. First, it will be observed that @ and YP appear in a similar way in 
the problem, since the collision integral cannot depend on the choice of velocity 
co-ordinates. This immediately leads to the conclusion that moments in the r and 
6' directions will be identical. Hence the r component of stress P,, will equal the 
6' component Po@. This corresponds in the spherically symmetric steady problem 
to the more obvious identity of PBo andP6+. Secondly, in the cylindrical problem x 
plays the same role as the r-component of velocity in the spherical case. We 
would thus expect that the z-component of the temperature will freeze in this 
case. 

It is interesting to note that the variable h does not feature either in the dif- 
ferentiation or integration of equation (2.21 j .  Hence, it will behave simply as a 
parameter in the problem. Its inclusion in the non-equilibrium solution will occur 
in the form suggested by matching the solutions of equation (2.21) with the equi- 
librium solution. 

It is necessary, in order to obtain a solution of equation (2.21), to deduce the 
moment equations. The first moment equation obtained by integrating (2.21) 
over the velocity space is 

-((ntf) = 0, (2.23) 
a 

at, 

which may be integrated directly to give 

n = (1 - h2/K2)2/Ii'2t:, (2.24) 

where the arbitrary function of h has been evaluated by comparison with the equi- 
librium solution. 

The equations of second-order moments may be obt.ained from (2.21) as the 
closed set (Freeman 1967) 

and 

(2.25) 

where 

a constant evaluated from the collision mechanics. If initially we had written A,  
for the quantity A(Bntf), then the scaling would have proceeded in a similar way 
with A,  replacing A and the constant in (2.25) would have been absent. 

IVe see that 

(2.26) 
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The equation for r from (2 .25 )  is 

(2 .27 )  

This is the equation for the temperature obtained in the spherically symmetric 

7 = D$( -$, - 1 ;  l / t 2 ) ,  (2 .28)  

where 9 is the confluent hypergeometric function (ErdBlyi 1953).  D is a constant 
of the differentiation and hence depends only on A. Now, in equilibrium, we 

have T = (N/AT,)$ 

a7 a7 4r 
t&+(3t2+ 1 ) 7 + - -  = 0, 

at; Ot, 3 t ,  
where t, = 2t1/3Bnt;. 

case. The solution of (2 .27 )  appropriate to this problem is 

or 

= (1 - A ; ) / ( K t ) Q ,  

7 = (1 - h2/K2) / (Kt , )+ .  (2 .29)  

Comparing this with the behaviour of (2 .28)  for t ,  small which is Dtg we obtain 

(2 .30 )  D = 2%/Bb( 1 - h'/K'), 

(2 .31 )  

In a similar way the various stress components may be obtained by integrating 
(2 .25) .  Further, higher order moments may be computed as in the case of the 
steady spherically symmetric solution (Freeman & Thomas 1967) and matching 
with the equilibrium solutions allows a complete solution to be determined. 

In general, if the solution to the spherically symmetric steady problem for 
some moment is - 

I' = G(s), 

which has an equilibrium variation G(s)  N sa, then the corresponding core solu- 
tion for the unsteady cylindrical flow is given by 

where the equilibrium value of 
It is apparent, however, that difficulties arise with the temperature when 

h = K ,  i.e. a t  the front. Weseethat for fixed A, the temperature becomes constant 
as t ,  + 00 and has the 'frozen' value 

for cylindrical flow is H(A)tT. 

23 r ( 2 )  
B+(I - P / K ~ )  r(g)' TF = 

As the front is approached, however, this becomes infinite. At fixed t , ,  the 
solution is infinite at  the front, although the singular nature of the expansion 
allows the correct zero value to be achieved as equilibrium is approached. This 
behaviour is, of course, only another indication of the singular nature of all the 
solutions in the front region. It is obvious that in this region, the scaling intro- 
duced earlier is no longer capable of describing the behaviour of the equations. 
The nature of the difficulty is, however, apparent from the manner of the break- 
down. It will be necessary to introduce a suihble sealing for 1 - h2/K2 in this 
region to overcome this difficulty. 
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The variation of r along lines of constant h is shown in figure 2. The variation 
of r across the flow is indicated in figure 3. The breakdown of the theory as 
h/K -+ 1 results in the rapid variation of r at the front. 
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FIGIJRE 2. Variation of temperature along particle paths: - - -, equilibrium; 
-, non-equilibrium. 

3. Solution near the front 
Near the front h = K ,  so that (1 - h2/K2) tends to zero. The manner of the 

breakdown indicates that this quantity is, in fact, of order A+ near the front. 
Conseqtieritly, a new set of variables must be introduced as follows: 

A' = Ab(h- K ) .  

) (3.1) 
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Re-writing the Boltzmann equation (2.14) in terms o f t ,  and h and then substitut- 
ing the variables, (3.1) gives as a first approximation 

-+--- _ _ _ _ _  _ _  

a- (nit’) + ~- - - (nit’) + n = 0, 
ati t r  an‘ ah 

a a av a 
- (t’P,,) + ( V  - A’ )  + 3P,, -r + Q,, = Bln’t’(n’Ti - P,,), 

with 

and 

= nil($’, $’, x’, A’, t’), (3.2) 

i5 - : r r I >  IC - 10-2 
*,=lo-‘ ‘ 

---------- 
:I%.-. 

1- 
c/------------ 

1 p m  ‘\ I /’ 
I I r,=10“ 
:‘ 
1 , I I I I I ,  I I 

19 08 06 0.4 ’0.2 0.2 04 06 08 0 

FIGURE 3. Variation of temperature at  fixed time: ---, equilibrium; -, non-equilibrium. 
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and 
_ _ .  

B, = SB. 

It is apparent that the simplification of the equations which occurred in the 
core region is not possible here. In  particular, it will be obvious that the moment 
equations will not form a closed set of equations due to the presence of the final 
term on the right-hand side of (3.2). The second-order moment equations in 
(3.3) now contain third-order moments. Further moment equations to deduce 
the third-order moments will necessarily include fourth-order moments and so 
on. It is therefore impossible to obtain a solution of the system so derived with- 
out using some further procedure of approximation such as the truncation after 
the third-order moments suggested by Grad (1949). We will, however, consider 
the relationship of equations (3.3) with the core solution further in 994 and 5. 

4. Solution for small time 

asymptotic expansion for small time of the form: 
A solution of the equations at  the front may be derived by introducing an 

1 
t ’ 4  

n‘ = - [Po(A) +t‘gPl(A) + . . .], 

i 
1 

V = f i [Uo(A)+t ’%Ul(A)+ ...I, 

1 
PA = [P,ro(A) + t’QP,r,(A) + . . .I 3 

and similarly for Pee and P, 
1 

Qk-r = -- tt+d& [Q,rl(A) + t‘‘QrwZ(A) + *..I 
and similarly for Qree and Q,, 

7’ = 
1 

[Xo(A) + t’QX,(A) + ...I, 

where A = t‘8A’. 

Substituting in the differential equations gives, to first order, 

and 

dFo dUo 
d A  [dA ] (Uo++A)-+ ---3 Po = 0, 

P,, = Po,, = P,, = FoSo ( = Po, say). 
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A further equation may be obtained by adding the three rate equations to ob- 
tain an energy equation. Taking account only of first-order terms in this equation 
gives 

Re-writing this equation gives 

A combination of (4.2) and (4.4) then gives 

or Qo = CFS, where C is an arbitrary constant. 
The equations (4.2) then become 

1 dFo _ _  
Fo d A  

dU 5 dF% 
2 d A  

(UO++A)$ -+Uo+ -- = 0. 

A solution of these equations is 

Fo = ( 3  - 2K&A)g/IP, Uo = A - 2/K*, } (4.7) Po = (3-2K+A)j /KY and So = (3-2K*A)/K%. 

These are in fact the first-order equilibrium solutions when scaled in the appro- 
priate variables a t  the front. This form of expansion thus describes the near equi- 
librium behaviour of the front equations. 

It should be noted that the error terms arise solely from the heat transfer 
terms Q,,, etc., and consequently these terms will appear in the calculations of 
further terms in the expansion. It is difficult therefore to see how these higher 
order terms can be computed without resorting to an infinite set of higher order 
moment equations. 

5. Solution for large time 
For large time, an asymptotic expansion of the following form may be sought: 

(5.1) 

1 
t 

n’ = ( Fo(A*) + t’-QS1(A*) + . . .), 
V = t‘-~(%,,(R*)+t‘-%Y!,(A*)+ ...), 

P; = t’-$(Pw0(A*) + t’-+P,,(A*) + . . .), 
and similarly for Pse and P,, 

Q’ = t’-- :[%,,(A*) +t’-Q&+.z+ ...I, rrr 

and similarly for Q,ee and Qrzl, 

7’ = $’-%[%(A*) + $’-$$(A*) + ...I, 
where A* = h’t’-%. 



The general solution of the second of equations (5.2) can be obtained para- 

@o = WQ(l+CW)-+, A* = W+(l+CW)-*, (5.3) 
metrically as 

where C is an arbitrary constant. 
The matching equations require that 

c = 0, 

a0 = A*. 
and the solution becomes 

Substituting into the first equation gives 

(5.4) 

where the matching with the core solution has again been made. Using these 
results the final three equations become 

I 2 d  
3 g r r 0 -  --(g,,,,A*) 3 dR* = A*%(A*%8--Prro),  

3geeo - - ~ (PeeoA*) = A*%(A*! % - g e e 0 1  J 2 d  
3 dA* 

(5.5) 

The equations (5 .6 )  correspond to the limiting value of the core equations as the 
front is approached, though, written in terms of the similarity variable A*, 
they are not easily recognized. The derivatives here correspond to a differentia- 
tion with respect to t - 3  and not time itself and also there is a slight difference 
between the dependent variables introduced above and those in the core region. 
To see the correspondence, a new set of variables must be introduced. If we write 

A* = Y-4, grr0 = BY-%, etc. (5.7) 

and Yo = .9-Y$, 
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then these equations become 

Using the relation 

we obt,ain 
grr + 9 0 0  + gz2 = 39-1 Y2,  

d9-  49-  
d Y 2  dY 3 Y  

y2 -- + ~ (3  Y + 1) + -- -- = 0, 

which is equation (2.27) for the temperature in the core region. This confirms 
that the zeroth order terms of the large time equation correspond to the limiting 
form of the core solutions a t  the front. 

The error terms again arise from the heat transfer terms Q&., etc. and conse- 
quently these will occur in the next order solution making it difficult, if not im- 
possible, to evaluate the higher order terms as in $4. 

Neither of the similarity solutions described in §§4 and 5 brings us any nearer 
extending the solution to the edge of the core region A’ = 0 and beyond. 

6. Conclusions 
By use of a scaling within the core region, an analytic solution has been ob- 

tained from the closed set of moment equations up to second order. The simi- 
larity of this solution to the corresponding one for the steady spherical expansions 
indicates how higher order moments could be computed, and a direct transforma- 
tion from the results obtained in one problem to that in the other can be stated. 
The dramatic breakdown of the solution in the front region, as is obvious in the 
computed results of figure 3, makes it imperative that new scaling be introduced. 
Although this is possible, the resulting equation for the distribution function has 
still the major difficulties of the Boltzmann equation contained within it. No 
closed system of moment equations is now possible, unless some other assump- 
tions are employed to truncate the expansion scheme. 
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